New Constructions of Complete Non-cyclic Hadamard Matrices, Related Function Families and LCZ Sequences
نویسندگان
چکیده
AHadamard matrix is said to be completely non-cyclic (CNC) if there are no two rows (or two columns) that are shift equivalent in its reduced form. In this paper, we present three new constructions of CNC Hadamard matrices. We give a primary construction using a flipping operation on the submatrices of the reduced form of a Hadamard matrix. We show that, up to some restrictions, the Kronecker product preserves the CNC property of Hadamard matrices and use this fact to give two secondary constructions of Hadamard matrices. The applications to construct low correlation zone sequences are provided.
منابع مشابه
New Constructions of Balanced Quasi-Cyclic Generalized Hadamard Matrices
In this paper, we define quasi-cyclic (QC) generalized Hadamard matrices and balanced QC generalized Hadamard matrices. Then we propose a new construction method for QC generalized Hadamard matrices. The proposed matrices are constructed from the balanced optimal low correlation zone (LCZ) sequence set which has correlation value −1 within low correlation zone.
متن کاملButson Hadamard matrices with partially cyclic core
In this paper, we introduce a class of generalized Hadamard matrices, called a Butson Hadamard matrix with partially cyclic core. Then a new construction method for Butson Hadamard matrices with partially cyclic core is proposed. The proposed matrices are constructed from the optimal balanced low-correlation zone(LCZ) sequence set which has correlation value −1 within LCZ.
متن کاملQuasi-Cyclic Generalized Hadamard Matrices
In this paper, we define quasi-cyclic(QC) generalized Hadamard matrices and balanced QC generalized Hadamard matrices. Then we propose a new construction method for QC generalized Hadamard matrices. The proposed matrices are constructed from the balanced optimal low correlation zone(LCZ) sequence set which has correlation value −1 within low correlation zone.
متن کاملNew Sets of Optimal Binary Low Correlation Zone Sequences
In this paper, we propose new methods of constructing optimal binary low correlation zone(LCZ) sequences. In the new method, we devise a column sequence set of length 2 − 1 from a binary sequence of period 2 − 1 having ideal autocorrelation property and this column sequence set is used to construct binary LCZ sequence sets of period 2n−1 when (m+1)|n. The new method gives us the optimal sets wi...
متن کاملConstructions of Complex Hadamard Matrices via Tiling Abelian Groups
Applications in quantum information theory and quantum tomography have raised current interest in complex Hadamard matrices. In this note we investigate the connection between tiling of Abelian groups and constructions of complex Hadamard matrices. First, we recover a recent very general construction of complex Hadamard matrices due to Dita [2] via a natural tiling construction. Then we find so...
متن کامل